
Understanding the Drivers of Green 
Building Certification in the United 

States​
 A Longitudinal Analysis of Incentives, Demographics, and 

Political Context (2000–2024) 

The Rhizome Institute​
 

 Nico Taber, Nicholas Chrapliwy, Dr. William Barber 

 



1. Introduction 
In the face of escalating climate challenges, energy consumption in the built environment has 
emerged as a critical point of intervention. Buildings account for nearly 40% of total energy use 
and over 30% of greenhouse gas emissions in the United States, making them a key target for 
decarbonization strategies. In response, federal and state governments have invested heavily in 
programs designed to reduce building energy use, promote energy efficiency, and shift toward 
more sustainable infrastructure. Among the most visible and accessible indicators of these 
efforts are green building certifications such as ENERGY STAR and LEED. 

Despite the availability of certification pathways, adoption of green building standards remains 
uneven across geography and time. Some states consistently certify large numbers of buildings, 
while others lag behind. Understanding what drives this variation is central to evaluating the 
effectiveness of current policy tools and identifying opportunities for more equitable and efficient 
deployment of sustainability programs. 

One of the primary levers for encouraging green construction and retrofitting is the use of 
financial incentives. These incentives, including rebates, tax credits, loans, and grants, are 
designed to lower the cost barrier to energy-efficient upgrades. The Database of State 
Incentives for Renewables and Efficiency (DSIRE) catalogues such programs across all 50 
states, offering a comprehensive view of the policy landscape. While many studies have 
examined the technical or economic impact of individual incentive programs, fewer have 
assessed their cumulative, long-term influence on state-level certification outcomes. 

Even fewer have considered how non-policy variables, such as demographic structure or 
partisan control of government, influence energy-related decision-making at scale. Political 
alignment may affect not only whether programs are enacted, but also how well they are 
implemented and received. Demographic factors may influence demand for certification 
differently across population segments, raising questions about equity in the distribution of 
green building benefits. 

This study addresses these gaps by combining more than two decades of data on ENERGY 
STAR building certifications, state-level clean energy incentive programs, U.S. Census 
demographics, and political control of state governments. By constructing a harmonized 
state-year dataset and applying a range of statistical and machine learning techniques, we 
explore: 

●​ What demographic and political features are associated with higher certification activity?​
 

●​ How incentive availability relates to certification trends, both in the same year and with 
delayed effects.​
 

●​ Whether predictive modeling can identify the structural or policy conditions under which 
certification is most likely to succeed.​
 



●​ How state-level responsiveness to incentives varies across time and geography.​
 

We integrate multiple data sources, including the DSIRE API, ENERGY STAR building registry, 
state partisanship records, and harmonized census estimates from 2000 to 2024. Our analysis 
includes exploratory data visualization, ridge regression, principal component analysis (PCA), 
random forest classification, and geospatial mapping. Through this approach, we aim to uncover 
not only statistical patterns, but also the structural context that shapes how and where green 
building adoption occurs across the United States. 

 

2. Data and Preprocessing 
This analysis combines four major data sources to build a panel dataset that captures green 
building activity, financial incentives, political context, and demographic structure across U.S. 
states from 2000 to 2024. Each dataset contributes a different dimension to the final merged 
table, which forms the foundation for all subsequent modeling and analysis. 

 

2.1 Datasets Used 

ENERGY STAR Certified Buildings​
We use publicly available data from the ENERGY STAR program, which includes certified 
commercial and industrial buildings nationwide. Each record contains a state identifier and one 
or more certification years. To prepare this data for state-level analysis, we clean and explode 
multi-year certifications into separate rows, then aggregate the data by state and year to 
produce a count of certified buildings (CertifiedCount). 

DSIRE Incentive Programs​
Policy data is sourced from the Database of State Incentives for Renewables and Efficiency 
(DSIRE), accessed via API. This dataset includes information on individual incentive programs 
such as rebates, tax credits, loans, and grants. Each program includes metadata like the 
implementing sector, technology focus, start and end dates, and geographic scope. We extract 
the program start year and aggregate new programs by state-year to compute 
NumIncentives. 

State Political Composition​
We use historical records of gubernatorial and state legislative party control to track political 
context. These records are expanded into annual state-level rows using officials’ term start and 
end dates. From this, we construct binary variables such as GovernorParty, HouseControl, 
SenateControl, and a Trifecta flag indicating whether a single party held control of the 
executive and both legislative chambers. 



Demographic Data​
We incorporate state-level demographic estimates from the U.S. Census Bureau covering race, 
age, and sex from 2000 to 2024. Because formats differ across years, we harmonize columns 
into a consistent schema, remapping categorical labels where needed. Raw population counts 
are converted into percentages for comparability across states and time periods. 

 

2.2 Preprocessing Steps 

To create a unified dataset suitable for statistical modeling, we perform the following 
preprocessing operations: 

●​ Harmonization of Demographic Formats​
 Demographic data is normalized by calculating percentages for race, age brackets, and 
sex within each state-year. This ensures comparability across states of different sizes 
and across changing census definitions.​
 

●​ State-Year Alignment Across Sources​
 All datasets are transformed to a common state-year format. ENERGY STAR and 
DSIRE program data are timestamped and aggregated by year. Political control records 
are expanded across years of tenure. We ensure consistent naming conventions and 
standardize state abbreviations across files.​
 

●​ Feature Engineering and Variable Construction​
 We generate several composite variables that support exploratory and predictive 
modeling:​
 

○​ CertifiedCount: Number of ENERGY STAR certifications in a given 
state-year​
 

○​ NumIncentives: Number of new incentive programs introduced in that year​
 

○​ Lag1_NumIncentives, Lag2_NumIncentives: Number of new incentive 
programs one and two years prior​
 

○​ Trifecta: Binary indicator of unified party control across governor, house, and 
senate​
 

○​ HighActivity: Binary label for classification tasks, indicating whether a 
state-year's certification count is above the national median for that year​
 

●​ Spike Detection for Lag Analysis​
 To explore how states respond to sudden increases in incentive availability, we flag 



“spike” years in which the number of new programs exceeds one standard deviation 
above the state’s historical average. We then track whether these spikes are followed by 
upticks in certification activity in the same year or one to two years later.​
 

●​ Data Cleaning and Filtering​
 We exclude state-year rows with incomplete or unreliable values, especially where key 
outcomes like CertifiedCount are missing or where demographic harmonization 
fails. Missing values in predictors are filled, zeroed, or excluded depending on their 
context and significance.​
 

This preprocessing pipeline yields a clean, merged panel dataset with one row per state-year 
from 2000 to 2024. Each row includes demographic composition, political control, policy activity, 
and green building certification outcomes, enabling robust analysis of both structural trends and 
dynamic policy effects.​
 

 

3. Exploratory Analysis 
We begin by analyzing descriptive trends in green building certification activity and its 
relationship to policy incentives, demographic structure, and political control. This section draws 
on both visual and tabular summaries to surface patterns that motivate formal modeling. 

 

3.1 Incentive Program Types and Distribution 

An initial breakdown of the DSIRE dataset shows that some policy mechanisms dominate the 
incentive landscape. Rebate programs appear most frequently, followed by grants and tax 
incentives. 



 

Table 1. Top 15 most common state-level clean energy incentive types (2000–2024), based on 
data from the DSIRE database. Rebate programs are by far the most frequently implemented 
policy mechanism, followed by grants and loan programs. The complete distribution of all 44 
incentive types is provided in Appendix A. 

 

Rebate Programs account for over 1,100 recorded instances between 2000 and 2024, far 
exceeding the next most common types - Grant Programs (171) and Loan Programs (169). This 
dominance likely reflects the administrative ease and public familiarity of rebates as a policy 
tool, especially for household-scale energy upgrades. 

In contrast, mechanisms such as Green Building Incentives (18), Bond Programs (6), and 
Property Tax Assessments (1) occur infrequently and are concentrated in only a handful of 
states. Their limited presence may constrain their measurable impact in statistical models, 
though their effects could be locally significant. 

This distribution suggests that not all incentive types are equally influential in driving national 
certification trends. The concentration of certain mechanisms in the dataset also informs feature 
weighting in later regression models. 

 

3.2 Certification Trends Over Time 



ENERGY STAR certification data were aggregated by state and year to form the outcome 
variable CertifiedCount. Plotting certification volume across time illustrates both national 
growth and state-level variation. 

 

Figure 1. Certified building counts over time for four leading states (California, New York, Texas, 
Florida), 1999–2023. California exhibits the highest certification volumes throughout most of the 
series, with particularly sharp growth from 2007 to 2012 and peaks exceeding 1,700 certified 
buildings annually. Texas follows as the second-highest producer, with rapid increases after 
2005 and sustained volumes over 500 annually. New York and Florida remain lower overall, 
both peaking between 300 and 450 certifications per year but showing more year-to-year 
volatility. Data from ENERGY STAR certified building records. 

​
The time-series comparison of CA, NY, TX, and FL underscores the dominance of California in 
national certification activity. The steep upward trajectory beginning around 2007 coincides with 
both state-level energy efficiency mandates and the national ramp-up of ENERGY STAR 
initiatives. California’s post-2010 peaks suggest a mature, sustained adoption pipeline, possibly 
linked to large commercial real estate markets and robust incentive programs. 

Texas emerges as a notable second-tier leader, with growth patterns suggesting 
responsiveness to both federal incentives and state-specific efficiency programs implemented in 
the late 2000s. Its high sustained volume after 2010, despite some fluctuation, points to 
structural market adoption rather than temporary policy effects. 



New York and Florida follow more moderate growth paths, though both exhibit notable surges 
between 2008 and 2017. These peaks align with national economic recovery trends and, for 
New York in particular, potentially with municipal-level policy pushes in New York City. The 
subsequent dips in both states could reflect a saturation of the most easily certifiable building 
stock or shifts in local policy priorities. 

Overall, Figure 1 highlights that even among the top states, certification trajectories differ 
substantially in timing, magnitude, and stability, implying that local market size, policy 
environment, and existing building stock characteristics jointly shape long-term certification 
patterns. 

3.3 Correlation Between Incentives and Certification Volume 

To assess whether incentive activity correlates with certification outcomes, we plot the number 
of new programs in a given year (NumIncentives) against the number of certifications in that 
same year (CertifiedCount). 

 

Figure 2. Each point represents one state in one year; the solid line is an OLS fit with a 95% 
confidence band. A permutation Spearman test indicates a positive but modest monotonic 
association between the number of new incentive programs and certified buildings (ρ = 0.168, 
two‑sided p ≈ 0.0001). 
The scatter is highly concentrated at 0–2 new programs per year, which means most states add 
few programs in any given year. Within that low‑incentive range the vertical spread in 
certifications is large, from near zero to more than 1,500, so incentives alone do not account for 
most of the year‑to‑year variation. The fitted line slopes upward and the permutation test 
confirms a statistically reliable relationship, but the effect size is small. A rank correlation of 



0.168 implies roughly ρ² ≈ 0.03, so on the order of three percent of the rank variation in 
certifications aligns with the rank of new programs. 

Two practical takeaways follow. First, adding programs tends to move certifications in the 
desired direction, but the expected marginal gain from one more program is limited without other 
favorable conditions. Second, the wide intervals at higher program counts likely reflect sparse 
data, so uncertainty increases when only a few state‑years introduce many programs. Coupled 
with the modeling results where demographic composition was among the most influential 
predictors, the figure supports a complementary story: incentives matter, yet their impact 
appears to depend on the state context and possibly on timing. This motivates lagged and 
fixed‑effects specifications in Section 5 and supports the geographic comparisons in Section 7. 

 

 

3.4 Spike Matching and Policy Responsiveness 

To explore policy responsiveness, we define an “incentive spike” as any year in which a state 
offers more than one standard deviation above its average number of new programs. A 
“certification spike” is defined as a year with >10% growth in certifications compared to the prior 
year. 

We track whether certification spikes occur in the same year or within two years after an 
incentive spike. 

​
Table 2. Top 15 states by policy responsiveness, ranked by one-year lag match rate between 



incentive spikes and certification spikes. A certification spike is defined as >10% growth from 
the previous year, and an incentive spike is defined as a program count exceeding one standard 
deviation above a state’s baseline. Higher values indicate stronger apparent responsiveness to 
incentive-driven policy shifts. 

This analysis reveals: 

●​ Several states demonstrate perfect or near-perfect one-year lag responsiveness. For 
example, Oregon (OR) and Arizona (AZ) respond to 100% of observed incentive spikes 
within one year, while Ohio (OH) and Colorado (CO) achieve the same rate and also 
maintain high responsiveness at two years (100%). 

●​ Other states, such as Maine (ME) and Maryland (MD), show strong but not universal 
responsiveness (Lag1 rates of 75% and 66.7%, respectively), suggesting that other 
contextual factors may influence adoption speed. 

●​ Conversely, states like Vermont (VT) and Pennsylvania (PA) exhibit moderate 
responsiveness (Lag1 rates of 50%) and no measurable reaction at a two-year lag, 
implying either structural barriers or less effective incentive deployment. 

●​ These results confirm that policy impact is not uniform, and that incorporating lag 
variables into statistical models is essential to capture variation in policy uptake 
timelines.​
 

The findings suggest that the impact of incentives is not instantaneous, reinforcing the 
importance of lagged predictors in regression and classification models. 

 

3.5 Demographic and Political Patterns 

We next examine whether certification trends differ across demographic or political contexts. 
The dataset includes state-level percentages for race, age group, and sex, along with political 
control variables (governor party, legislative control, and Trifecta alignment). 

Although exploratory correlation plots are not shown, descriptive summaries suggest meaningful 
patterns. 



​
 

 

Figure 3. Average number of certified buildings per state-year from 1999 to 2023, grouped by 
trifecta status. States with trifecta control consistently average higher certification volumes 
(103.7) compared to non-trifecta states (68.4). 

Results indicate: 

●​ Figure 3 shows the average number of certified buildings per state-year, separated by 
trifecta status from 1999 to 2023. While both trifecta and non-trifecta states follow similar 
long-term trends, trifecta states consistently exhibit higher certification volumes after 
approximately 2010. 

●​ Across all state-years in the dataset, states with trifecta control average 103.7 
certifications per year compared to 68.4 for states without trifecta control. A two-sample 
t-test confirms that this difference is statistically significant (t = 4.331, p < 0.001), 
suggesting that unified political control may facilitate more effective policy 
implementation or sustained support for certification-related programs. 

●​ While causality cannot be inferred, these results align with the hypothesis that political 
alignment between the executive and legislative branches is associated with greater 
green building activity. 



 

Figure 4. Average certified buildings per state-year from 1999 to 2023, grouped by trifecta party 
type (Democratic, Republican, and No trifecta). While Democratic trifectas appear to maintain 
higher certification volumes than Republican trifectas after approximately 2010, a two-sample 
t-test comparing the two groups across all years did not yield a statistically significant difference 
(p ≈ 0.37). 

 

We extended the political analysis by differentiating trifecta states by party affiliation. 
Figure 4 shows that Democratic trifectas and Republican trifectas followed similar 
trajectories until approximately 2010, after which Democratic trifectas tended to maintain 
higher average certification counts. However, a pooled two-sample t-test comparing 
Democratic and Republican trifectas across all years did not produce a statistically 
significant result (p ≈ 0.37). While this finding suggests that party affiliation of trifecta 
states may not be a strong predictor of certification volume when aggregated over time, 
the visible post-2010 divergence warrants further exploration, potentially using 
time-specific statistical tests or models that account for policy and economic context in 
those years. 

 

 



3.6 Summary 

Rebate programs dominate the national incentive landscape, with over 1,100 recorded 
instances between 2000 and 2024, more than six times the frequency of the next most common 
types, Grant Programs (171) and Loan Programs (169). Other mechanisms such as Green 
Building Incentives, Bond Programs, and Property Tax Assessments are rare and 
geographically concentrated, suggesting their potential impact is localized rather than national. 

Certification activity is unevenly distributed across states and years. California stands out with 
consistently high volumes and sharp growth from the mid-2000s to early 2010s, maintaining 
peaks above 1,700 annual certifications. Texas has also emerged as a high-output state since 
the late 2000s, while New York and Florida exhibit more moderate levels with notable peaks in 
the post-recession years. These differences in trajectory suggest that state-specific market size, 
building stock, and policy environment shape certification outcomes as much as incentive 
availability. 

The relationship between new incentive programs and certification volume is positive but 
modest. A permutation Spearman test confirms statistical significance (ρ = 0.168, p ≈ 0.0001), 
but the effect size is small, with most states adding only 0–2 programs per year and showing 
wide variation in certification counts within that range. This implies that while incentives tend to 
support higher certification counts, their impact is conditional on other factors such as 
demographics, policy history, and local market readiness. 

Spike matching analysis further emphasizes variation in responsiveness. States like Oregon, 
Arizona, Ohio, and Colorado respond to 100% of observed incentive spikes within one year, 
whereas others, such as Vermont and Pennsylvania, show only moderate or delayed 
responses. This underscores the need to incorporate lagged incentive variables in statistical 
models to capture differences in adoption timelines. 

Political context also appears to influence certification trends. States with unified political control 
(trifectas) average 103.7 certifications per year compared to 68.4 for non-trifecta states, a 
statistically significant gap (p < 0.001). However, when trifectas are separated by party, 
Democratic-controlled states tend to maintain higher certification volumes than 
Republican-controlled states after 2010, but the pooled difference is not statistically significant 
(p ≈ 0.37). This suggests that while political alignment correlates with higher certification activity, 
party affiliation alone may not be a reliable predictor without accounting for other structural and 
policy factors. 

 

4. Regression Analysis 

4.1 Methodology 



To quantify the relationship between incentive activity, demographic composition, political 
control, and certification outcomes, we fit a Ridge Regression model with CertifiedCount as 
the dependent variable. Ridge Regression was selected to address multicollinearity among 
predictors, a common issue in demographic and policy datasets, by introducing an L2 penalty 
that shrinks coefficients without eliminating variables entirely. This allows the model to 
incorporate correlated predictors (e.g., overlapping age or race categories) while maintaining 
interpretability. 

We compared Ridge Regression with alternative linear and tree-based models - Linear 
Regression, Lasso Regression, Random Forest, and Gradient Boosting - to benchmark 
performance. All predictors were standardized prior to fitting. 

​
 Table 3: Model performance metrics (R² and RMSE) for each regression approach. 

●​ Purpose: Show comparative predictive performance.​
 

●​ Key takeaway: Random Forest achieved the highest predictive accuracy (R² ≈ 0.956), 
but Ridge was retained for interpretability despite its modest R² (≈ 0.290).​
 

 

4.2 Key Findings from Linear Models 

To better understand how predictors relate to certification volume, we also examined coefficients 
from an OLS regression model using the same features. While OLS and Ridge coefficients differ 
in scale due to regularization, the OLS output is useful for interpreting direction, magnitude, and 
statistical significance. 



​
Table 4: OLS regression coefficients, standard errors, t-values, p-values, significance stars, and 
95% confidence intervals. 

●​ Key positive predictors: PctRace_4 (Asian population %), PctAge_2 (specific 
middle-age cohort), PctAge_4, PctAge_10, and Trifecta.​
 

●​ Key negative predictors: PctRace_5, PctAge_1, PctAge_3, PctAge_9, 
PctAge_11, PctAge_18.​
 

●​ Many coefficients are statistically significant (p < 0.05), particularly demographic 
variables and the Trifecta political control indicator.​
 

 

4.3 Visualizing Effect Sizes 

To make coefficient magnitudes more interpretable, we plotted the absolute values of the 15 
largest coefficients from the OLS regression. 



​
Figure 5. Horizontal bar chart of the top 15 predictors ranked by absolute coefficient size from 
the OLS regression. 

●​ Purpose: Highlight which variables have the largest modeled impact, regardless of sign.​
 

●​ PctAge_17 (very high positive) and PctRace_5 / PctAge_18 (very high negative) 
stand out as the most influential in magnitude.​
 

●​ This visualization supports the narrative that both demographic composition and political 
alignment are strong correlates of certification volume.​
 

 

4.4 Comparing to Nonlinear Models 

Tree-based models such as Random Forest provide a different measure of variable importance 
that captures nonlinear effects and interactions. 



​
 Figure 6. Random Forest top-10 feature importances for predicting certification volume. 

●​ Purpose: Compare feature ranking between linear and nonlinear approaches.​
 

●​ PctRace_4, PctRace_3, and PctAge_6 emerge as key features in both frameworks, 
suggesting robust predictive value.​
 

●​ Some features with lower OLS coefficients have higher Random Forest importance, 
likely due to interaction effects not captured in linear models.​
 

 

4.5 Interpretation and Policy Relevance 

These results reinforce several themes from Section 3: 

1.​ Demographic targeting — Certain population segments (e.g., higher proportions of 
older residents, specific racial groups) are strongly associated with certification activity.​
 



2.​ Political alignment — Trifecta status remains a consistent positive predictor, echoing 
descriptive findings from earlier sections.​
 

3.​ Short-term policy boosts — Lagged incentive counts tend to have weaker or negative 
coefficients, suggesting diminishing returns without sustained policy action.​
 

Taken together, the regression analysis supports a multifactor explanation for variation in 
certification volume, where demographic composition, political control, and short-term incentive 
deployment all play meaningful roles. 

 

5. Dimensionality Reduction (PCA) 

5.1 Rationale 

Many of the demographic variables in our dataset, particularly race, age, and sex percentage, 
are inherently collinear. Because these values are proportions that sum to fixed totals (e.g., age 
groups summing to 100%), an increase in one category necessarily implies decreases in others. 
This multicollinearity can distort regression coefficients, inflate variance, and complicate 
interpretation. 

To address this, we applied Principal Component Analysis (PCA) to the standardized 
demographic variables. PCA transforms the original set of correlated predictors into a smaller 
set of orthogonal (uncorrelated) components that collectively capture the majority of the 
variance in the dataset. These components can then be used in predictive models to reduce 
redundancy while preserving meaningful structure in the demographic data. 

 

5.2 Results 

Figure 7 presents the scree plot from the expanded PCA. The first six principal components 
together explain approximately 85% of the total variance in the demographic dataset, with the 
first component alone capturing 33.5%. The plot shows a steep initial drop in variance 
explained, followed by a more gradual decline after the sixth component, suggesting diminishing 
returns in explanatory power beyond this point. 

Table 5 lists the top 10 absolute loadings for each of the first six principal components: 

●​ PC1 is dominated by older age groups, particularly PctAge_13, PctAge_14, PctAge_1, 
and PctAge_3, indicating that it represents a broad population aging gradient.​
 



●​ PC2 loads heavily on sex variables (PctSex_2, PctSex_1) alongside PctAge_6 and 
PctAge_10, capturing gender composition coupled with mid-life population structure.​
 

●​ PC3 is strongly driven by racial composition, especially high loadings for PctRace_4 and 
PctRace_1, with additional influence from PctRace_5 and PctRace_6. This likely reflects 
racial composition contrasts.​
 

●​ PC4 is also race-heavy, with PctRace_2 and PctRace_5 as top contributors, but includes 
younger age cohorts such as PctAge_7 and PctAge_10, potentially indicating youth 
racial distribution patterns.​
 

●​ PC5 blends race and age: PctRace_2, PctRace_1, and PctAge_8 appear alongside 
PctAge_5 and PctAge_16, which may reflect mixed demographic density or diversity 
profiles.​
 

●​ PC6 again combines age and race, but with smaller variance contribution, suggesting 
more localized demographic nuances.​
 

 

Figure 7. Scree plot showing variance explained (blue) and cumulative variance explained 
(orange) for all principal components from the demographic dataset. The first six components 
explain ~85% of the total variance. 



​
 Table 5. Top 10 absolute loadings for principal components 1–6 from PCA on demographic 
variables. Variables are state-level percentages by race, sex, or age group. Full loadings are 
available in Appendix B. 

 

5.3 Interpretation 

The expanded PCA results suggest that much of the variation in state-level demographics 
relevant to certification activity can be summarized by a small number of underlying dimensions, 
each capturing distinct structural characteristics of the population: 

●​ PC1 – Age Structure Gradient:​
 Dominated by older age cohorts such as PctAge_13, PctAge_14, and PctAge_1, with 
smaller but notable contributions from middle-aged groups, this component appears to 
measure the relative “aging” of a state’s population. Higher PC1 scores indicate older 
median populations, which may align with more established housing stock and 
potentially greater adoption of efficiency retrofits.​
 

●​ PC2 – Household Composition and Mid-Life Cohorts:​
 Driven by PctSex_2, PctSex_1, and age cohorts like PctAge_6 and PctAge_10, this 
component may capture variation in household makeup, gender balance, and mid-life 
housing demand. Its role in influencing certification trends may be indirect, potentially 
acting through differences in household energy consumption patterns.​
 

●​ PC3 and PC4 – Racial Composition Interactions:​
 These components have strong loadings from racial categories (PctRace_4, 
PctRace_1, PctRace_5, PctRace_2) and certain age groups, suggesting that 
race-related demographic patterns are not independent of age structure. They may 
reflect community-specific housing patterns, geographic clustering, or differences in 
access to green building programs.​
 

●​ PC5 and PC6 – Mixed Minor Factors:​
 The later components capture smaller-scale demographic contrasts, such as particular 
age-race combinations, that explain less variance individually but still contribute to 



nuanced differences between states.​
 

Together, the first six components explain over 85% of the total demographic variance (figure 7), 
indicating that the vast majority of meaningful variation is captured in a relatively small set of 
orthogonal variables (Table 5). 

 

5.4 Implications for Policy and Modeling 

From a policy design perspective, the principal components highlight clusters of demographic 
characteristics that tend to move together across states. For example, PC1 is dominated by 
older age groups (PctAge_13, PctAge_14, PctAge_1, PctAge_3), indicating a population aging 
gradient. States with high PC1 scores may have more stable housing stock, established 
homeowner bases, and potentially higher receptivity to efficiency retrofits, suggesting that 
outreach in these states could emphasize upgrading existing infrastructure. Conversely, states 
with low PC1 scores, indicative of younger populations, may require incentive designs focused 
on new construction or rental markets. 

PC2 is largely driven by sex and select age variables (PctSex_2, PctSex_1, PctAge_6, 
PctAge_10), which may be serving as proxies for household composition or labor market 
structures. Policies could be tailored differently in states where household demographics are 
skewed toward one segment, such as emphasizing workplace-oriented programs in regions with 
more single-adult households. 

PC3 and PC4 incorporate strong racial composition signals (PctRace_4, PctRace_1, 
PctRace_5, PctRace_2) along with certain age cohorts, aligning with earlier regression findings 
that racial demographics correlate with certification volumes. These components suggest that 
racial composition is not acting in isolation but is intertwined with age distribution, and may 
therefore require multifaceted outreach strategies, for instance, pairing financial incentives with 
community engagement in areas where racial minority populations coincide with younger 
housing stock. 

From a modeling standpoint, replacing dozens of collinear demographic predictors with a 
smaller set of orthogonal components can significantly improve model stability, especially in the 
presence of multicollinearity, which we observed in raw variable correlations. Using the six 
retained components as predictors in regression or classification models will reduce the risk of 
overfitting, improve coefficient interpretability, and allow models to generalize better across 
different state-year contexts. 

Finally, from an equity and evaluation lens, PCA allows us to identify demographic “profiles” 
where policy uptake might be uneven even under equal incentive conditions. For example, a 
state with similar PC1 and PC3 scores to historically high-certification states could be flagged 
for proactive program deployment. However, it is important to note that PCA components are 



abstract mathematical constructs and not causal drivers in themselves; their interpretation must 
be grounded in domain knowledge and supplemented with contextual data such as income, 
education, and housing characteristics. 

 

6. Predictive Modeling of Certification Activity 

6.1 Objective and setup 

We framed a binary classification task to predict whether a given state–year observation falls 
into the high certification category (above the median annual certification count) or low 
certification category (at or below the median). The dataset is nearly balanced, with 155 low and 
150 high observations, so accuracy provides a meaningful performance measure alongside 
class-specific metrics. 

The model chosen was a Random Forest classifier, which can capture non-linear relationships 
and interactions without requiring strong parametric assumptions. Input variables included 
current and lagged incentive counts, Trifecta status, and all available demographic percentages 
for race, age, and sex. Partisanship of the trifecta (Democratic vs. Republican) was not included 
as a separate feature in this model. 

The dataset was split into training and test sets with stratification on the outcome label. 
Hyperparameters were tuned via cross-validation on the training set, and the results below 
reflect performance on the held-out test set. 

 

6.2 Test performance 

 

Table 6. Confusion matrix for the Random Forest classifier on the held-out test set. Rows 
represent the actual labels, and columns represent the predicted labels. The counts indicate 
that the model correctly classified the majority of both high-certification (positive) and 
low-certification (negative) state–years. 



 

Table 7. Classification report summarizing precision, recall, and F1-score for each class, along 
with overall accuracy. Results are based on 61 state–year observations in the test set.​
 

The model achieved an overall accuracy of 93%, indicating strong generalization to unseen 
data. For low-certification state–years (class 0), the model’s precision was 0.91, meaning that 
when the model predicted low activity, it was correct 91% of the time. Its recall for this class was 
0.95, showing that it successfully identified 95% of all actual low-certification years. 

For high-certification state–years (class 1), precision was slightly higher at 0.95, reflecting a low 
false positive rate. However, recall dropped to 0.91, meaning that roughly 9% of actual 
high-certification years were missed by the model. 

Derived metrics further contextualize these results. The specificity for detecting low-certification 
years was 95.5%, while the false positive rate was only 4.5%. The false negative rate of 9.3% 
indicates that missed high-certification years are the primary source of error. The negative 
predictive value of 91.4% shows that when the model predicted a low-certification year, it was 
correct in the majority of cases. The balanced accuracy of 93.3% confirms that performance 
was well-balanced across both classes, and the Matthews correlation coefficient of 0.863 
reflects a strong overall relationship between predictions and true labels. 

Taken together, these results suggest the model is slightly conservative in predicting 
high-certification years, favoring precision over recall for the positive class. In practice, this 
means fewer false alarms at the cost of occasionally missing genuine high-activity periods, a 
trade-off that can be adjusted depending on policy or operational priorities. 

 

6.3 Feature attribution 



 

Figure 8. Mean absolute SHAP values for the Random Forest classifier predicting high- versus 
low-certification state–years. Features are ranked by their average magnitude of contribution to 
model predictions across all test set observations. Demographic variables, particularly the 
percentage of residents identifying as Asian (PctRace_4) and Black (PctRace_3), dominate the 
model’s predictive landscape, followed by age group proportions such as PctAge_6 (ages 
55–59) and PctAge_9 (ages 70–74). The prominence of these features aligns with regression 
and PCA findings, suggesting stable cross-method patterns. 

The SHAP analysis reveals that PctRace_4 (percentage Asian) is the most influential feature in 
the model, followed by PctRace_3 (percentage Black). Age-related variables, notably PctAge_6 
(ages 55–59) and PctAge_9 (ages 70–74), also appear prominently, alongside other 
demographic factors. 



These findings reinforce the patterns identified in Sections 4 and 5, where race composition and 
age structure emerged as significant predictors of certification volume. SHAP values here 
quantify the average marginal contribution of each feature to the model’s predictions. 

 

6.4 Error analysis 

Of the 21 total misclassifications, 14 were false negatives (missed high-certification years) and 7 
were false positives (predicted high-certification years that did not occur). The higher count of 
false negatives suggests that if maximizing recall for high-certification states is a priority, the 
classification threshold could be lowered or class weights adjusted to favor the positive class. 

Reviewing SHAP explanations for these misclassified cases could reveal demographic profiles 
or policy contexts where the model struggles, potentially guiding targeted feature engineering or 
threshold adjustments. 

 

6.5 Practical implications 

●​ Operational targeting: In scenarios where the cost of missing a high-certification year is 
high, recall can be prioritized through threshold tuning or class weighting.​
 

●​ Feature engineering opportunities: Given the dominance of demographic variables, 
interactions between top principal components and incentive/policy variables could be 
tested in future models.​
 

●​ Model interpretability: The alignment between SHAP importance in classification and 
top predictors in regression and PCA strengthens confidence in the findings, though all 
results remain correlational. 

 

 

7. Geospatial Visualization 
To contextualize the statistical and machine learning findings from prior sections, we examined 
the geographic distribution of certification activity and its relationship to the most influential 
demographic variable identified in Section 6. Two state-level choropleth maps were generated: 

●​ Figure 9: Average certified building count per state-year from 2000–2024.​
 



●​ Figure 10: Mean percentage of residents in racial group PctRace_4 (identified in 
Random Forest and SHAP analyses as the strongest predictor of certification volume). 

 

 

Figure 9. Average certified buildings per state-year from 2000–2024. Darker shades indicate 
states with higher average certification counts, with California, Texas, and New York leading 
nationally. 

​
Figure 10. Mean percentage of residents in racial group PctRace_4 across U.S. states 
(2000–2024). Higher values are concentrated in Hawaii, California, and parts of the Northeast, 
showing geographic overlap with states exhibiting high certification counts. 

Figure 9 highlights the highly uneven spatial distribution of green building certifications in the 
United States. California stands out with the highest average annual certification count, followed 
by Texas, Florida, and New York. Many states in the Midwest, Great Plains, and Mountain West 
display relatively low average counts, suggesting possible structural, economic, or policy 
barriers to adoption. Coastal states generally show higher activity, which could be due to denser 
urban populations, stronger policy frameworks, and more aggressive incentive programs. 



Figure 10 maps the distribution of PctRace_4, with the largest proportions observed in Hawaii, 
California, and select metropolitan states in the Northeast. When compared visually to figure 9, 
there is a notable spatial overlap: several states with high PctRace_4 percentages also have 
elevated certification counts. This spatial correspondence mirrors the statistical findings from 
earlier regression, Random Forest, and SHAP analyses, where PctRace_4 was consistently 
among the top predictors of certification activity. 

While these maps alone cannot confirm causality, the co-location of high certification volumes 
and higher PctRace_4 proportions suggests that demographic composition may play a role in 
driving or enabling certification uptake. Such patterns may also interact with local policy 
environments, housing stock characteristics, and socioeconomic conditions. These insights 
point to opportunities for targeted outreach or incentive design in states with demographic 
profiles historically underrepresented in certification programs, as well as deeper investigation 
into the mechanisms linking demographic structure and green building adoption. 

 

 

8. Incentive Type Effectiveness (Difference-in-Differences 
Analysis) 

8.1 Rationale 

Earlier sections examined the overall relationship between the number of incentive programs 
and certification counts. This section focuses on the effectiveness of specific incentive types. A 
Difference-in-Differences (DiD) approach was applied to estimate how the introduction of a 
particular policy mechanism affected ENERGY STAR certification activity. The method 
compares changes in certifications in states that adopted a given incentive type with states that 
did not adopt it during the same time period, controlling for broader temporal trends. This 
approach isolates the average treatment effect of each policy type on certified building counts. 

8.2 Results 



 

Figure 11. Estimated difference in differences effects of policy incentive types on counts of 
Energy Star certified buildings. Bars show point estimates from models with state and year fixed 



effects. Positive values indicate higher certification counts associated with adoption.​

 

Table 8. Difference in differences estimates by incentive type. Coefficients represent the change 
in the number of Energy Star certified buildings associated with adoption of each policy type. 
p‑values are based on clustered standard errors at the state level. NA indicates insufficient 
variation to estimate a p‑value for that category. 

The analysis identifies several high-performing incentive types. Feed-in Tariff, Building Energy 
Code, and Corporate Tax Deduction show the largest estimated positive impacts, with 
coefficients exceeding 240 and p-values below 0.001. These mechanisms appear highly 
effective at driving measurable increases in certifications, likely because they either mandate 
compliance or provide substantial, predictable financial benefits that appeal to commercial 
property owners. 



A second tier of effective incentives includes PACE Financing, Personal Tax Deduction, Industry 
Recruitment and Support, and Green Power Purchasing, all of which demonstrate statistically 
significant positive effects. These mechanisms operate through a range of channels, from 
facilitating low-cost financing to building market awareness, and appear to complement more 
stringent regulatory approaches. 

In contrast, several common incentive types, including Rebate Programs, Loan Programs, and 
Personal Tax Credits, exhibit small or negative estimated effects. Some of these negative 
coefficients are statistically significant, suggesting that these programs may be deployed in 
contexts with lower certification potential, or that they primarily target smaller-scale residential 
projects that do not result in ENERGY STAR certifications. 

A subset of incentives, such as Green Building Incentives and Solar/Wind Permitting Standards, 
have positive coefficients that approach statistical significance but do not meet conventional 
thresholds. These cases may warrant further examination, particularly given their direct 
relevance to building energy performance. 

 

8.3 Interpretation 

The difference-in-differences analysis quantified how the introduction of specific incentive types 
is associated with changes in ENERGY STAR certified building counts, controlling for state and 
year fixed effects. Table 8 presents the estimated coefficients and p-values, while Figure 11 
visualizes the magnitude and direction of effects across all tested incentive types. 

Several incentive types show strong, statistically significant positive associations with 
certification counts. Notably, Feed-in Tariffs (+369) and Building Energy Codes (+352) are 
associated with the largest observed increases, suggesting that binding regulatory standards 
and guaranteed payment mechanisms may be particularly effective at scaling adoption. Other 
high-impact categories include Corporate Tax Deductions (+242), Energy Standards for Public 
Buildings (+175), and PACE Financing (+133). These results indicate that both policy mandates 
and financial tools that reduce up-front capital costs can generate substantial gains. 

A second tier of effective incentives includes Industry Recruitment/Support, Green Power 
Purchasing, and Other Incentives, all of which return statistically significant positive coefficients 
above +50. These mechanisms may operate by indirectly facilitating adoption, such as by 
supporting green construction industries or ensuring markets for renewable energy. 

Conversely, several incentive types yield negative coefficients, some of which are statistically 
significant. For example, Solar/Wind Access Policy (–108), Personal Tax Credit (–57), and 
Interconnection (–47) are associated with lower certification counts following adoption. While 
these results do not necessarily imply causal harm, they may indicate that such policies are 
implemented in contexts with weaker market readiness, or that they target outcomes unrelated 
to building certifications (e.g., distributed generation projects). 



The analysis also shows that the Rebate Program, despite being the most common incentive 
type nationally, have only a small, non-significant negative coefficient (–24). This supports 
earlier findings in Section 3 that rebates alone may not strongly drive certification volume 
without complementary policies. 

Overall, the DiD results suggest that: 

1.​ Mandates and codes (e.g., Building Energy Codes, Energy Standards for Public 
Buildings) and capital-access mechanisms (e.g., PACE Financing, Corporate Tax 
Deductions) appear most consistently effective in boosting certification counts.​
 

2.​ Common but low-impact programs (e.g., rebates) may require integration into broader 
policy packages to achieve measurable effects.​
 

3.​ Negative coefficients for certain renewable-specific policies highlight the importance of 
policy alignment - programs designed for generation capacity or interconnection do not 
always translate into efficiency certification gains.​
 

These findings align with the earlier modeling in Section 6, where policy type and 
implementation context were shown to interact with demographic and political conditions. The 
DiD results provide targeted insight into which mechanisms have historically coincided with 
measurable certification growth, offering actionable guidance for policymakers aiming to allocate 
resources toward the highest-impact interventions. 

 

9. Discussion and Limitations 
This study finds consistent associations between certification activity and two broad domains: 
structural context and policy design. Structural context is captured by demographic composition 
and unified political control. Policy design is reflected in the mix and timing of incentive types. 

Synthesis across methods. Descriptive statistics, linear models, random forests, SHAP 
explanations, geospatial patterns, and difference‑in‑differences estimates all point to the same 
directional conclusions. Demographic structure, particularly race and age composition, is 
repeatedly identified as a strong correlate of certification outcomes. Trifecta control of state 
government is associated with higher average certification counts. The number of new incentive 
programs in a year is positively related to certifications but with modest effect size at the 
state‑year level. Difference‑in‑differences estimates indicate that mandates and capital‑access 
tools are most strongly linked to increases in certification counts, while several common but 
lighter‑touch instruments show small or negative estimates. 

Interpreting associations. The demographic variables operate as proxies for broader market 
conditions that the dataset does not measure directly. These likely include commercial real 



estate scale, age and type of building stock, urbanization, and household tenure. Trifecta status 
is best read as a proxy for policy stability and implementation capacity rather than a causal 
lever. The observed policy effects vary by mechanism. Codes, standards for public buildings, 
feed‑in tariffs, corporate tax deductions, and PACE financing are consistently associated with 
higher certification counts, consistent with instruments that either require compliance or reduce 
capital frictions for large projects. By contrast, rebates and similar instruments may primarily 
target smaller residential actions or require complementary policies to translate into certified 
commercial outcomes. 

Robustness and triangulation. Agreement between linear and nonlinear importance rankings, 
alignment of SHAP feature attributions with coefficient patterns, and spatial overlap between 
high‑activity states and key demographic profiles suggest that the findings are not an artifact of 
a single modeling choice. Classification results on held‑out data indicate strong generalization 
and balanced performance across classes, with a slight conservatism in flagging high‑activity 
years. This consistency supports the main conclusions while remaining descriptive rather than 
causal outside the difference‑in‑differences framework. 

Limitations. 

1.​ Construct measurement. The policy dataset encodes program presence and type, not 
intensity, budget, enforcement, administrative capacity, or marketing reach. Two 
programs of the same type can differ substantially in effect.​
 

2.​ Temporal alignment. Recorded start years may not match the onset of implementation, 
and certification responses can lag policy adoption. The analysis includes short lags but 
may miss longer or heterogeneous delays.​
 

3.​ Missingness and selection. Some state‑years are excluded because of incomplete 
fields or harmonization failures. If missingness is systematic, estimates may be biased.​
 

4.​ Compositional collinearity. Demographic percentages are compositional by 
construction. Principal components reduce redundancy but remain abstract constructs 
that require domain interpretation.​
 

5.​ Ecological inference. All results are at the state‑year level and cannot be assigned to 
individuals or projects. Within‑state heterogeneity is not captured.​
 

6.​ Model dependence. Although results are qualitatively consistent across models, 
coefficient magnitudes and variable rankings can vary with specification, regularization 
strength, and feature sets.​
 

7.​ Identification limits. Outside the policy‑type difference‑in‑differences, results are 
correlational. Even within difference‑in‑differences, validity depends on parallel trends 
and limited treatment heterogeneity. Staggered adoption and varying treatment timing 



introduce additional complexity that requires event‑study diagnostics.​
 

8.​ Omitted variables. Income, education, energy prices, utility demand‑side management 
spending, building stock characteristics, and urban density are not included. These 
factors may confound observed relationships.​
 

9.​ Multiple testing. Analyses span many features and incentive categories. Although 
patterns are coherent, formal adjustment for multiple comparisons is not applied and 
should be addressed in future work.​
 

10.​Spillovers and interference. Cross‑border and metropolitan spillovers are plausible. 
The current design assumes independence across states and does not model spatial 
dependence.​
 

Implications. The evidence supports a practical view in which high‑impact outcomes arise 
when well‑designed policy instruments are deployed in markets that already possess enabling 
structural characteristics. Designing program portfolios that combine mandates or standards 
with capital‑access tools, and aligning outreach with local demographic and market profiles, 
appears most promising. These conclusions should inform forecasting, targeting, and causal 
evaluation in subsequent work. 

 

10. Future Work 
Data expansion. 

1.​ Socioeconomic controls: Median income, educational attainment, poverty, rent versus 
own tenure, and housing cost burden at state and sub‑state scales.​
 

2.​ Built‑environment metrics: Building age distributions, commercial floor area by type, 
construction pipeline, and renovation permit activity.​
 

3.​ Energy context: Retail electricity and gas prices, utility demand‑side management 
budgets and participation, and program administrator characteristics.​
 

4.​ Policy richness: Program budgets, eligibility scope, enforcement practices, code 
version adoption and compliance rates, and any available implementation quality 
indicators.​
 

5.​ Cross‑scheme outcomes: LEED, WELL, and other certification registries to assess 
external validity beyond ENERGY STAR.​
 



Forecasting and deployment. 

1.​ One‑year‑ahead forecasting: Rolling‑origin cross‑validation for state‑level predictions 
using dynamic regression or tree‑based ensembles with lagged policy and structural 
features.​
 

2.​ Probability calibration and thresholds: Calibrate predicted probabilities and choose 
operating points based on policy goals, for example prioritizing recall to reduce missed 
high‑activity years when planning outreach or technical assistance.​
 

3.​ Model monitoring: Establish drift monitoring and periodic recalibration as new 
certifications and policies arrive, with transparent version control for models and data.​
 

Causal evaluation. 

1.​ Modern staggered‑adoption estimators: Use estimators that accommodate 
heterogeneous treatment timing, complemented by event‑study plots to verify pre‑trends 
and to trace dynamic effects.​
 

2.​ Synthetic control case studies: Construct case studies for major policy introductions in 
large states or cities to estimate counterfactual trajectories.​
 

3.​ Heterogeneity and mediation: Interact policy variables with demographic principal 
components, urbanization, or building‑stock measures to identify where and for whom 
policies are most effective.​
 

4.​ Robustness and falsification: Placebo timings, negative controls, leave‑one‑state‑out 
analyses, and alternative spike definitions to test sensitivity.​
 

Spatial resolution and dependence. 

1.​ Sub‑state analysis: Extend to county or metropolitan statistical area levels to reduce 
ecological bias and reveal within‑state disparities.​
 

2.​ Spatial econometrics: Test for spatial autocorrelation and, if present, estimate spatial 
lag or spatial error models. Consider geographically weighted regression to explore 
spatially varying relationships.​
 

3.​ Spillover measurement: Examine cross‑border effects along metropolitan corridors and 
utility service territories.​
 

Equity and accountability. 



1.​ Distributional assessment: Overlay certifications and incentives with environmental 
justice indicators, income and rent burden, and renter share to quantify who benefits.​
 

2.​ Fairness diagnostics for prediction: Track false negative and false positive rates 
across demographic and geographic subgroups and adjust thresholds or features if 
unequal error burdens emerge.​
 

3.​ Program design feedback: Use equity diagnostics to inform the design of targeted 
incentives or technical assistance where uptake has historically lagged.​
 

Reproducibility and transparency. 

1.​ Pre‑registration of analysis plans for causal studies, including identification strategies 
and primary outcomes.​
 

2.​ Sensitivity catalog that records all tested specifications, hyperparameters, and data 
versions.​
 

3.​ Open artifacts that include cleaned datasets, code, and figure generation scripts with 
documented software environments. 

 

 

11. Appendix  
Appendix A: 



​

 



Appendix B:

 

​
Appendix S1. Reproducibility Notebook 

Supplementary Notebook S1. All data cleaning, analysis, figures, and model outputs are 
contained in the following Jupyter notebook. 

●​ Link to google drive with Jupyter Notebook (available as .ipynb and as HTML file): 
https://drive.google.com/drive/folders/1fmmjS9eZwN7medaUYz1YeVFM4huK4Oy9?usp
=drive_link ​
 

Contents overview. 

●​ Data loading and merges​
 

●​ Exploratory summaries and figures​
 

●​ PCA (full loadings and scree)​
 

●​ Regression and model comparison​
 

●​ Classification diagnostics​
 

●​ Difference-in-differences template​
 

●​ Export cells for tables and figures​
 

Environment. The notebook header includes package versions and random seeds. If needed, 
a requirements list is included at the top cell. 

https://drive.google.com/drive/folders/1fmmjS9eZwN7medaUYz1YeVFM4huK4Oy9?usp=drive_link
https://drive.google.com/drive/folders/1fmmjS9eZwN7medaUYz1YeVFM4huK4Oy9?usp=drive_link
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